

Virtual Design Review 2

Flight Simulator Egress System

Introduction

Team Leader Frank Cullen **Design Engineer** Andrew Filiault Research Engineer Andrew Porter

Financial Advisor Daniel Swope Historian Marco Karay

Project Background

- Sponsor: Lockheed Martin
- The purpose of this project is to support pilot training through the design of a system to improve the way pilots get in and out of F-16 cockpit simulators.

Figure 1: A Lockheed Martin F-16 in flight. (Lockheed Martin, n.d)

Andy Porter

Design Constraints

Project Summary

- System must move 5th and 95th percentile users in and out of cockpit dome
- Must position user in exact orientation of current fixed cockpit seat
- Allows user to egress in case of emergency
- Produce functional prototype in under \$2000

Figure 3: Existing cockpit dome design.

Frank Cullen Functions, Metrics and Targets

Andy Porter

Function

Move seat far enough for 95th percentile male to exit

Metric

Distance from edge of simulator to front of seat

Target 28 inches^[1]

Figure 4: Seat in locked and extended position

1 - value derived from range of motion for 95th percentile male from MIL-STD-1472G

Frank Cullen

Function

Allow user to control seat movement

Metric

Distance from user to seat control mechanism

Target 28.2 inches^[2]

Figure 5: Control range of user while in seat

2 - value derived from length of arm of 5^{th} percentile female from MIL-STD-1472G

Frank Cullen

Function

Secure seat in cockpit

Metric

Force locking mechanism can withstand

Target 338 pound-force^[3]

Figure 6: Position where user can apply maximum force (DoD, 2012)

3 - value derived maximum leg strength of 95^{th} percentile male from MIL-STD-1472G

Frank Cullen

Function Support weight of seat and user

Metric Material deflection under passenger load

Figure 7: Material displacement in vertical direction

Figure 8: Material displacement in horizontal direction

Frank Cullen

Andrew Filiault

Concept Generation

Frank Cullen

Drive System Rack and Pinion

Two motors will each turn a gear that is in mesh with a rack

Guide system Rollers in channel

The seat is guided along the extruded slot

Andrew Filiault

Drive System Worm Gear

Motor turns worm gear that meshes with threaded coupler

Guide system Cylindrical rails

- Non-threaded rail guides linear bearing
- Threaded rail drives coupler

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Andrew Filiault

Drive System Manual foot power

- Pilot pushes and pulls seat using his feet
- Grip tape and raised bars to increase traction

Guide system Slotted track

Andrew Filiault

Mounted wheels guided on slotted track

Looking Forward

- Concept Selection
- Low-level prototyping for proof of concept
- Stress analysis
- Final concept generation

Andrew Filiault

Acknowledgments

- Thank you to Lockheed Martin for their sponsorship
- Thank you to Jeff Payne, Robert Kenney, and Ken Clonts of Lockheed Martin for their guidance and direction
- Thank you to Dr. Hollis for his expertise on our project

LOCKHEED MARTIN

Andrew Filiault

References

Lockheed Martin. (n.d). F-16 Block 70. [Photograph] Retrieved from

http://www.lockheedmartin.com/us/products/f16/F-16- Block-70.html

U.S. Department of Defense. (2012, January 11). *Design Criteria Standard: Human Engineering.* [Table] Retrieved from <u>http://everyspec.com/MIL-STD/MIL-STD-1400-1499/MIL-</u>STD-1472G_39997/

Andrew Filiault

Supplemental Slides

Additional Concepts

